students are reminded that submitted assignments must be typed (i.e. can NOT be hand written), neat, readable, and well-organized. However, GRAPHS are ok to plot them by hand as long as they are large, legible, and properly labeled and that their calculations are typed within the rest of the assignment. Assignment marks will be adjusted for sloppiness, poor grammar, spelling, for technical errors as well as if you submit a PDF file.
Problem 1
The manager of a food processing plant that specializes in potato chips has developed an LP model to reflect processing times.
x1 = boxes of regular chips
x2 = boxes of crinkle cut chips
Winter 2019
Page 1
Maximize subject to
Cutting Frying Packing Crinkle Crinkle
Z = .40×1 + .30×2 (profit)
3.6×1 + .8×2 ≤ 144 minutes 3.2×1 + 1.6×2 ≤ 160 minutes 4.8×1 + 7.2×2 ≤ 576 seconds
x2 ≤ 80 boxes
x2 ≥ 20 boxes x1, x2 ≥ 0
ADM2302 Section M, N, P and Q
Assignment 1
Briefly explain or define each of these parts of the model:
The optimal solution is to produce 15 boxes of x1 and 70 boxes of x2 for a total maximal profit of $27.00. Determine each of the following:
h. The amount of each resource that will be used. i. The amount of slack for each resource.
Problem 2
The new manager of a food processing plant hopes to reduce costs by using linear programming to determine the optimal amounts in kilograms of two ingredients it uses, x1 and x2. The manager has constructed this model:
Winter 2019
Page 2
Minimize Subject to
Protein Carbohydrates
Z = .40×1 + .40×2
3×1 + 5×2 ≥ 30 grams 6×1 + 4×2 ≥ 48 grams
x1, x2 ≥ 0
Maximize Subject to x1+x2 ≤6 x1 -x2 ≥0 x1 +x2 ≥3 x1, x2 ≥ 0
Z = x1 + 2×2
function had been parallel to one of the constraints, there would have been two equally optimal solutions. If the cost of x2 remains at $.40, what cost of x1 would cause the objective function to be parallel to the carbohydrate constraint? Explain how you determined this.
Problem 3:
Given the linear programming problem:
ADM2302 Section M, N, P and Q Assignment 1
Problem 4
The Oak Works is a family-owned business that makes handcrafted dining room tables and chairs. They obtain the oak from a local farm tree farm, which ships them 2,500 pounds of oak each month. Each table uses 50 pounds of oak while each chair uses 25 pounds of oak. The family builds all the furniture itself and has 480 hours of labor available each month. Each table or chair requires six hours of labor. Each table nets Oak Works $400 in profit, while each chair nets $100 in profit. Since chairs are often sold with tables, they want to produce at least twice as many chairs as tables.
The Oak Works would like to decide how many tables and chairs to produce so as to maximize profit.
Winter 2019
Page 3
a. b.
Formulate algebraically the linear programming model of this problem.
Formulate this same linear programming problem on a spreadsheet and SOLVE using Excel solver (Provide a printout of the corresponding “Excel Spreadsheet” and the “Answer Report”).
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more
Recent Comments